

Normal Forms - Reference

First Normal Form (1NF): Attributes should be atomic and tables should have no repeating groups

Second Normal Form: For every $X \rightarrow A$ that holds over relationship schema R , where A is a non-prime attribute

1. either $A \in X$ (it is trivial), or
2. X is a superkey for R , or
3. X is transitively dependent on a super key R

Easier to think of the opposite: X cannot be a partial candidate key for R

- Says nothing about non-prime to non-prime dependencies!

Third Normal Form (3NF): For every $X \rightarrow A$ that holds over relationship schema R ,

1. either $A \in X$ (it is trivial), or
2. X is a superkey for R , or
3. A is a member of some candidate key for R

Easier to think of: X must be a full candidate key, unless A itself is a part of a candidate key

“Every non-key attribute must provide a fact about the Key, the whole Key, and nothing but the Key... so help me Codd”

Superkey of R : A (possibly larger than necessary) set of attributes that is sufficient to uniquely identify each tuple in $r(R)$

Candidate Key of R : A “minimal” superkey.

Primary Key: A specific Candidate Key chosen to represent a relation/table.

Non-prime: An attribute that is not part of any candidate key

Lossless Decomposition Test: $R1, R2$ is a lossless join decomposition of R with respect to F if and only if at least one of the following dependencies is in $F+$

1. $(R1 \cap R2) \rightarrow R1 - R2$
2. $(R1 \cap R2) \rightarrow R2 - R1$

Dependency Preservation: After decomposition from R to $R1 \dots Rn$, the closure of FDs of all $R1 \dots Rn$ must be equivalent to that of R

Boyce-Codd Normal Form (BCNF): For every $X \rightarrow A$ that holds over relationship schema R ,

1. either $A \in X$ (it is trivial), or
2. X is a superkey for R

Functional Dependencies (FD)

$X \rightarrow Y$: "X determines Y" / "Y is dependent on X"

where X and Y are sets of attributes

The **Closure** of F (denoted $F+$) is the set of all FDs:

$\{X \rightarrow Y \mid X \rightarrow Y \text{ is derivable from } F \text{ by Armstrong's Axioms}\}$

Two sets of dependencies F and G are equivalent if $F+ = G+$

Armstrong's Axioms: where A, B, C are sets of attributes

Reflexive rule: if $B \subseteq A$, then $A \rightarrow B$

Augmentation rule: if $A \rightarrow B$, then $CA \rightarrow CB$

Transitivity rule: if $A \rightarrow B$, and $B \rightarrow C$, then $A \rightarrow C$

Union rule: If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta\gamma$

Decomposition rule: If $\alpha \rightarrow \beta\gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$

Pseudotransitivity rule: If $\alpha \rightarrow \beta$ and $\beta \rightarrow \delta$, then $\alpha\beta \rightarrow \delta$

Normal Forms - Practice

Q1: Consider a Relation **R3 = (A, B, C, D, E, F)** which has the following functional dependencies **F**:

- A \rightarrow BC
- CD \rightarrow E
- CD \rightarrow F
- B \rightarrow F

Which of the following must also hold:

1. A \rightarrow B
2. A \rightarrow C
3. A \rightarrow E
4. A \rightarrow F
5. C \rightarrow E
6. AD \rightarrow E

Q2: What Attributes can be used to define a Candidate Key for **R3** (above)?

Q3: Consider the Relation **R4 = (A,C,B,D,E)**, with Functional Dependencies:

- A \rightarrow B
- C \rightarrow D

What is the Candidate Key for R4?

Q4: Consider the Relation **R5 = (V, W, X, Y, Z)**, with the following functional dependencies:

- V \rightarrow X
- WY \rightarrow X
- VWY \rightarrow Z

In this relation, **(V, W, Y)** is the Candidate Key. What normal form does **R5** satisfy? You may assume that all tuples are unique and attributes are atomic.

Q5: Consider the relation **R6 = (A, B, C, D)**, with the following functional dependencies:

- AB \rightarrow C
- C \rightarrow D

What is the Candidate Key for this relation?

What normal form does **R6** satisfy? You may assume that all tuples are unique and attributes are atomic.